ntroduction	Tool:	'SeDiChem' (Sediment Disturbance effects on Chemical status)							
Anna di continue		SeDiChem has been developed to assist in the quantification and assessment of potential effects on water quality from disturbance of contaminated sediments in estuarine and							
troduction		marine waters.							
	Purpose:	Note: SeDiChem should be considered to be an aid in the decision making process. The tool does not remove the need for further environmental considerations (e.g. site-							
		specific hydrological considerations) and ecological interpretation of outputs using professional judgement, when coming to a regulatory decision.							
		The spreadsheet applies the principles and calculation methods that are set out fully in the separate SeDiChem Technical Report (SC180002: Impact of sediment disturbance on							
	Technical:	chemical status', Environment Agency, 2019).							
	recinical.	The methods and approach are by design and necessity a compromise between 1) a pragmatic and simple method and 2) employment of robust and best available environmental							
uidance		understanding.							
	11	A SeDiChem Tool User Guide (Environment Agency, 2019a) outlines the functions of the tool and guides the user through the steps required to make an assessment.							
	User Guide:	Note: It is important that you understand the process before using SeDiChem to make an assessment. We recommend that you work through the worked examples in the User Guide.							
		Sediment disturbance activities in estuarine and coastal waters. The chemicals included within the assessment are restricted to a subset of the Marine Management Organisation suite that are commonly encountered in sediment.							
		The Chemicals included within the absensing a restricted to a super-time triemicals included within the absensing a restricted to a super-time triemical super-time triemical triemicals included within the absence of							
Use	Envelope of use:	SeDiChem is not designed for the assessment of sediment disposal schemes, it is used to inform assessment of the effects on water quality from disturbance of in situ sediments.							
Use		Caution should be applied to the interpretation of all SeDiChem outputs, taking account of the 'spot' nature of outputs, i.e. SeDiChem does not output water quality change effects							
		with distance. Similarly, SeDiChem does not account for temporal variation considerations.							
		Make a copy of the spreadsheet.							
	Before starting:	Populate Project details tab for audit trail purposes.							
	before starting.	Note that this is a live spreadsheet - therefore the associated assessment is a snap shot at that particular moment in time.							
		Familiarise yourself with Guidance, 'Key' tab and data entry requirements (as indicated by yellow cells throughout).							
ŗ	SeDiChem Version & date								
		ADEM							
	v3.1 Feb2019	Following APEM Ltd. development (using Microsoft Excel 2010); as issued to the Environment Agency.							
	V3.1 FED2019	DISCLAIMER: SeDiChem is used at your own risk. APEM Ltd cannot be held liable for any (a) decisions made based on its use, or (b) the functionality of any edits made to SeDiChem							
		subseqent to version 3.1							

	Project details
File name:	Humber Marine Energy
Project name:	Humber Marine Energy Park and Compensation Scheme
Applicant details:	Able UK Ltd
SeDiChem assessment date:	22/03/2021
Sediment chemistry input data details:	Sampling of sediments in dredge area taken 2011 (full dredge depth), plus resmpling of surface samples in 2017 and 2021
	Previous 4 years monthly data (2018-2021) CLEAN SITE - TI02 MONITORING POINT, 1985; HUMBER BUOY 26 0.5 KM O/S HULL MARINA; Humber No.28 Buoy 2.6 Km Ne Hessle Sand; Humber Near Hessle Sand 0.5 Km; R.HUMBER COMMITTEE SITE 7702 Environment Agency monitoring points.
Additional notes:	

Key / Cell reference convention				
Data input cell	Data input cell			
Compulsory data input	cell			
Default value provided				
Annual Average (AA) E	QS			
As selected from SSC u	plift library			

>> Enter site specific values in yellow cells. Enter all data available, otherwise leave blank. >> Compulsory data input cells have bold borders.

General site parameters	Medium	Unit	Value	Default
Background pH	Water	pH units		8
Measured Organic Matter content	Sed	%		8
Measured Fraction of Organic Carbon (Foc)	Sed	n/a		0.05
Fraction of Organic Carbon (calculation)	Sed	n/a	0.05	
Fraction of Organic Carbon - 'corrected'	Sed	n/a	0.05	
Back calc of OM	Sed	%	8	
Measured clay content	Sed	%	50	25
Clay content - 'corrected'	Sed	%	50	
Sediment density	Sed	kg/m ³		1250
Volume fraction water in sediment	Sed	%		80
Zinc-ambient background (diss) conc.	Water	μg/l	2.9	1.1
DOC	Water	mg/l	2.5	1.1
Net flow rate	Water	m³/day	21,000,000	1

			Sedin	ment chemistry	data	Water quality data	Local WFD		EQS and type	User notes
			Maximum		User defined	(generally Mean)	supporting			
	Full name	Short name	mg/kg	mg/kg	mg/kg	μg/I	element status	μg/I Fraction	Туре	(e.g. record source of data, audit information)
	Arsenic	As	50.00	25.20		2.91		25 Diss	Salt water long-term (mean) (SP)	
	Cadmium	Cd	0.50	0.30		0.09		0.2 Diss	Other surface waters' (mean) (PHS)	
쁄	Chromium	Cr	112.00	49.70		0.30		32 Diss	MAC (SP)	
ě	Copper	Cu	53.00	28.80		3.08		3.76 Diss	Salt water long-term (mean); DOC dependent (SP)	
8	Lead	Pb	135.00	60.70		0.40		14 Diss	MAC (PS)	
₽ ₽	Mercury	Hg	0.40	0.20		0.01		0.07 Diss	MAC (PHS)	
	Nickel	Ni	53.00	31.60		2.42		34 Diss	MAC (PS)	
	Zinc	Zn	287.00	55.30		4.94		9.7 Diss	Salt water long-term (mean) (SP)	
8	Benzo[a]pyrene	Benzo[a]pyrene	1.18	0.33		0.0818		0.027 Total	MAC; Other surface waters (PHS)	
ig ig ĕ ĕ œ	Benzo[b]fluoranthene	Benzo[b]fluoranthene	0.78	0.35		0.0691		0.017 Total	MAC; Other surface waters (PHS)	
S E S E	Benzo[ghi]perylene	Benzo[ghi]perylene	0.61	0.32		0.0774		0.00082 Total	MAC; Other surface waters (PHS)	
2 4 5 2	Benzo[k]fluoranthene	Benzo[k]fluoranthene	0.54	0.17		0.0416		0.017 Total	MAC; Other surface waters (PHS)	
Î	Fluoranthene	Fluoranthene	0.85	0.49		0.0606		0.120 Total	MAC; Other surface waters (PS)	
Organ										
6	Tributyltin	TBT	0.00	0.00		0.00046		0.0015 Total	MAC; other surface waters (PHS)	
🙃	Congener: BDE-28	BDE-28	0.00	0.00		0.00006		tri Total		
thers ner ne	Congener: BDE-47	BDE-47	0.00	0.00		0.00006		tetra Total		
e e e	Congener: BDE-99	BDE-99	0.00	0.00		0.00006		penta Total		
5 75 E	Congener: BDE-100	BDE-100	0.00	0.00		0.00006		penta Total		
호 후 S	Congener: BDE-153	BDE-153	0.00	0.00		0.00006		hexa Total		
dipl BDE	Congener: BDE-154	BDE-154	0.00	0.00		0.00006		hexa Total		
<u> </u>	Sum of PBDEs	Sum of PBDEs						0.014 Total	Sum MAC; Other surface waters (PHS)	
22	Hexachorobenzene	HCB	0.01	0.00				0.05 Total	MAC; other surface waters (PHS)	
\$	Hexacholorobutadiene	HCBD						0.6 Total	MAC; other surface waters (PHS)	
8	Hexabromocyclododecane	HBCDD						0.05 Total	MAC; other surface waters (PHS)	

	Choose sediment chemis to compare against in sit														
	thresholds:														
	User Input									WFD Status for info	Comparison 1	Comparison 2	Comparison 3	Comparison 4	Comparison 5
		cAL1	ISQG/TEL	ERL	PEL	cAL2	Max	Mean	User defined	Local WFD supporting element status					
	As	20		8.2	41.6	100	50.00	25.20	-						
	Cd	0.4		1.2	4.21	5	0.50	0.30	-						
	Cr	40		81 34	160	400	112.00	49.70	-						
, g	Cu	40 50		46.7	108 112	400 500	53.00	28.80	-						
E E	Pb	0.3		0.15	0.7	300	135.00 0.40	60.70	-						
a s	Hg Ni	20		20.9	42.8	200	53.00	0.20 31.60							
Metals (mg/kg)	Zn	130		150	271	800	287.00	55.30							
	Benzo[a]pyrene	100		430.0	763		1,180.00	327.00	-						
(µg/kg)	Benzo[b]fluoranthene	100					775.00	351.30	-						
3	Benzo[ghi]perylene	100					607.40	315.20	-						
PAHS (Benzo[k]fluoranthene	100					539.00	166.40	-						
A A	Fluoranthene	100	113.0	600.0	1494		850.20	491.70	-						
Organo tins ug/kg)	ТВТ	100				1000	1.00	0.03	_						
0 2 3	BDE-28						0.02	0.02	-						
	BDE-47						0.02	0.02	-						
- FA	BDE-99						0.02	0.02	-						
(µg/kg)	BDE-100						0.02	0.02	-						
<u> </u>	BDE-153						0.02	0.02	-						
PBDEs	BDE-154						0.02	0.02	-						
8	Sum of PBDEs						-	-	-						
S 9	нсв						8.00	0.55	-						
Others (µg/kg)	HCBD								-						
0.3	HBCDD						-	-	-						

KEY:

cal = chemical Action Level (or 'Cefas Action Level')

ISQG = Interim Sediment Quality Guideline
TEL = Threshold Effects Level: Maximum concentration at which no effects are observed
ERL = Effects Range Low: 10th percentile values in effects

Source reference
MMO (2018)
CCME (1999); Cd & Zn updated using Buchman (2008) & Defra (2017)
CCME (1999) unless stated otherwise
Buchman (2008) (consistent with Spencer & MacLeod (2002)) with values forming part of the same Screening Quick
Reference Tables (SQuiRTs) as the TEL and PEL values. Consistent (where relevant) with OSPAR (2013).

CCME (1999); Zn updated using Buchman (2008) & Defra (2017)

PEL = Probable Effects Level: Lower limit of the range of concentrations at which adverse effects are always observed

Sediment Type Correction (e.g. ESDAT,2000)

Substance	A (constant)	B (clay related coefficient)	C (organic matter related coefficient)
As	15	0.4	0.40
Cd	0.4	0.007	0.02
Cr	50	2	0.00
Cu	15	0.6	0.60
Pb	50	1	1.00
Hg	0.2	0.0034	0.00
Ni	10	1	0.00
Zn	50	3	1.50

$$\textit{Sed con}_{\textit{adj}} = \textit{Sed con}_{\textit{measured}} \times \left(\frac{\textit{A} + \textit{B} \times 25 + \textit{C} \times 10}{\textit{A} + \textit{B} \times \textit{clay}\% + \textit{C} \times \textit{OM}\%} \right)$$

			Selected		EPA (2005) log Kd range (median) [n] {estimated	
Metal	Kd reference name	General remarks	Log Kd	Kd cm3/g	mean} SD	Kd notes
As	0 high Kd		3.82	6,607	n/a	-Principal ref: EA (2007), consistent with Verbruggen et al (2001) i.e. used in Netherlands assessments. - Note for inio. EA (2007) particulate matter/water has Kd of 4. - Note for inio value used in SGV is 2.7 (EA, 2009); sm.) (com & Caly.
As	1 recommended Kd	Arsenic adsorption is dependent on pH, the arsenic oxidation state and temperature. In acidic and neutral	2.40	251	1.6-4.3 (2.2) {2.4} 0.7	 - Principal ref: EPA (2005) lit review of sediment/porewater. - Good confidence in mean estimate, assumes log-normal data distribution. Assume representative of all As oxidation states. Assumes includes freshwater data (which would generally make precautionary).
As	3 worst case Kd	waters, As(V) is extensively adsorbed, while As(III) is relatively weakly adsorbed (EA, 2007). In waters with a high pH. Kp values are considerably lower for both oxidation states.	1.60	40	1.6-4.3 (2.2) {2.4} 0.7	-Principal ref. EPA (2005) it review. -Vinort case/more precautionary from EPA sediment/porewater lit review Assumes minimum value from literature review (within 2.2 Sb from mean). No details of environmental conditions. -Assume representative of both As oddiston states. Largely feetbawter. -In pit regimes of 9 and above, negatively charged arient(V) species should dominate. This negative charge, in conjunction with the increased negative charge on day, should increase the mobility of the arsenic (V) species (Strenge & Peterson, 2004). Strenge & Peterson, 2004). Strenge & Peterson, 2004, Strenge & Peterson
	0 high Kd	Cd Kd exhibits strong relationship with salinity. Where an assessment site is known to exhibit predominantly low salinities, the SeDiChem user is encouraged to use the highest cadmium Kd value (0 high Kd') in			n/a	- Verbruggen et al (2001) i.e. used in Dutch assessments (4.93) focussed on pore water.
Cd		assessments. Cd Kd exhibits strong relationship	4.93	85,114		- For info EQS dossier only contains only SPM Kd (130,000).
Cd	1 recommended Kd	with salinity. Where site salinity change is large (most estuarine locations), noting that SelDChem is a spot assessment with no temporal resolution change, the '1 recommended Kd' value remains most appropriate Kd selection. Cd Kd exhibits strong relationship	3.70	5,012	0.5-7.3 (3.7) {3.3} 1.8	- Principal ref: EPA (2005) sediment/pore water lit review Excellent confidence in mean estimate, assumes log-normal data distribution. Based on Cd(II) data Selected above Verbruggen et al (2001) given more precautionary and review of multiple sources.
Cd	3 worst case Kd	with salinity. Where an assessment site is marine salinity dominated (approximating 35 ppt) the SeDiChem user is encouraged to use the lowest cadmium Kd value ("3 worst case Kd") in assessments.	2.00	100	n/a	-Principal ref: EA (2009b); presented as a worst case for information. Not directly relevant to a sediments study, because a soil- water partition value, taken from the SGV framework, itself taken from Thome et al (2005. Likely to be overly precautionary and results should be treated with caution. -Minimum value from PAP (2005) rejected as likely to be an outlier and not representative.
Cr	0 high Kd 1 recommended	Note, Cr(III) is the dominant	5.28	190,546	n/a	
Cr	Kd	chromium species in the estuarine environment. Cr(VI) is reduced to Cr(III) in seconds and is effectively	4.57	37,000	1.9-5.9 {4.9} 1.5	EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is Verbrungen et al (2001). EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is Verbrungen et al (2001). EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is EPA (2005) values provided here. Selected SRB (2009) value as slightly more precautionary than mean EPA (2005) value, which itself is Verbrungen et al (2001).
Cr	3 worst case Kd	permanent.	1.90	79	1.9-5.9 (4.9) 1.5	- EZYA (2005) sealment) pure water. Assumes ugenormal data distribution. Based on C (iii) data. ZX SD from mean, which also equals minimum from it review. - Very conservative relative to all other sources.
Cu	1 recommended Kd	When pH is low, copper adsorption is insignificant due to hydrogen ion competition for adsorption sites. In the case of high pH values (above 9), copper adsorption decreases because of the formation of soluble	4.53	33,884	n/a	- Verbruggen et al (2001), as used in Dutch assessments. - Median value of 10 European studies reported in ECI (2009) was 4.66 i.e. less conservative than this recommended value.
Cu	2 low/conservative Kd	metal carbonate and hydroxides or metal organic complexes [adsorption is high at pH 8-marine waters and is salinity independent]. The copper adsorption can strongly be correlated to the content of adsorbed organic carbon. An increase of adsorbed organic	4.39	24.409		- ECI (2009): Median value of 24.409 U/lg ((log KD. 439) is derived using existing Environmental Concentration Distributions of background and ambient copper in surface water and sediment (indirect calculation from study data - hence difference from the median value quoted above). - Used the ECI (2009) value (even though not a regulatory authority) as slightly more conservative than Verbruggen et al. (2001) [log Kd. 45.3]
Cu	3 worst case Kd	carbon enhances the copper uptake and vice- versa. Copper partitioning is maximal at the neutral pH region (which includes pH8) and decreases at both low and high pH values. The fate of copper in natural waters depends on such partitioning characteristics in the solid-	3.50	3,162	0.7-6.2 (4.1) [12] {3.5} 1.7	-EPA (2005) mean sediment-water KdNot used lowest EPA data as outside of all European values found in literature, e.g. ECI (2009) calculated min and max (relevant combinations of sediment and water concentration percentiles) derived as 3.95 and 5.0 respectively, which shows 3.50 as suitably conservative.
Pb	0 high Kd		5.63	426,580		- Verbruggen et al. (2001), as used in Netherlands assessments. - Adopted EC(2011) 50th percentile Ksed - 154882 [5.19] (range 35.481 - 707.946)
Ph	1 recommended Kd		5.19	154.882		Value chosen equivalent to SIB benthic sed-water in 150,000 [log did-5.] For information, SIB it review (SPM related) 180,000 [log did-5.] For information, LRA coastal (SPM related) 180,000 [log did-5.]
Pb	3 worst case Kd		4.55	35,481	2.0-7.0 (5.1) [14] {4.6} 1.9	Adopted the lower range extreme from EC(2011): a 35,481 - Equivalent to EPA (2005) derived sediment-water mean Kd. Assumes log-normal data distribution, edited data. Based on Pb(II) data. Excellent confidence in value.
Нд	1 recommended Kd	Noted that pH will influence Hg Kd, but relationship for marine sediments is not well described. Quantitative	5.05	112,202	n/a	- Verbruggen et al. (2001) i.e. used in Netherlands assessments. Strictly speaking underlying data refers to anorganic mercury; it is not clear whether or not this value is applicable for methyl-mercury. No contamination studies reviewed separated sediment Hg data.
Нд	2 low/conservative Kd	relationship in soils is described in EPA (1999b), however not applied here. Higher pH ranges (of the EPA (1999b) data) into which marine	4.90	79,433	3.8-6.0 [2] {4.9} 0.6	- Sediment/water (EPA, 2005). Assumes log-normal data distribution. Based on Hg(II) data. Moderate confidence in mean estimate.
Hg	3 worst case Kd	waters would fall have higher Kd values. Therefore not deemed necessary to infer pH influence for	3.80	6,310	3.8-6.0 [2] {4.9} 0.6	- Minimum value from the EPA (2005) reviews Rejected the SGV soll-water Kd (EA, 2009c) for inorganic mercury (500) which is generic from Thorne et al (2005) and inconsistent with other sources.
Ni	0 high Kd		3.90	7,943	0.3-4.0 {3.9} 1.8	Sediment/water (EPA, 2005). Assumes log-normal data distribution. Based on Ni(ii) data. For inde (SRS, 2009): -AREA coastal (SPM) 20,000 (log Kd=4.3); -SRB Rirelew (SPM) 17,000 (log Kd=4.3); -SRB Bernice 13,000 (log Kd=4.3) -EPA (2005) mean value log Kd=3.9 (all greater than this conservative SS value)
Ni	1 recommended		3.85	7,079	n/a	EC (2011) 50th percentile Ksed is 7079 [log Ksed=3.85]
NI	3 worst case Kd		3.63	7,079	n/a	Et. (2011) Sum percentile keed is 70/19 log Kseel's.85] Adopted the 50 sol-water for the form Thorne et al (2005). Likely to be overly precautionary because derived for soils rather than marine sediments, but is within EPA (2005) data range, therefore reasonable and provides a precautionary approach.
Ni			2.70	500		- EC(2011) lowest quoted of Ksed range is 2,138 [log Ksed=3.33] i.e. greater than the worst case adopted value here.
Zn	1 recommended Kd 2 low/conservative	FA (MAIN 6	4.86	73,000	n/a	EC (2010) - EU Risk Assessment Report, Zn- value for Kpsed. Same data source as Zebruggen et al (2001).
Zn	Kd	EA (2012) found no distinct pH/Kd relationship, although the highest Kd values were observed between -pH values of 7 and 8.	4.57	37,333		EC (2010) data values based on median data from Venema (1994). Lowest data from this set taken and same relationship between Kpsusp and Kpsed applied, to extract a minimum Kpsed. EPA (2005) mean sediment/water kd. Assumes log-normal data distribution, edited data. Excellent confidence in mean.
Zn	3 worst case Kd		4.10	12,589	1.5-6.2 (4.8) [13] {4.1} 1.5	Adopted the mean value as represents a very precuationary value relative to the European data sets. Minimum EPA (2005) value disregarded.

		Log Kd (derived)					Log Koc Koc		Acidity consta	y pH int correction
Organotins	Kd			Kd notes				Principal Ref	рКа	factor
				Regression analysis of data from several studies, reported in Meador (2000). Data						
				supports hypothesis that organic carbon in sediment controls the amount of TBT in water. Because TBT in marine systems occurs predominantly as the hydroxide, the						
				partitioning behaviour of TBT may be similar to that observed for neutral hydrophobic compounds and predictions generated by EqP may be valid (Meador, 2000a).						
твт	1 recommended Kd			Selected Kd approach is generally consistent with Bangkedphol et al (2009) (e.g. 12.1TOC% gives 3.351logKd using this xls, very close to the 3.34logKd determined by						
				Bangkedphol et al (2009) - Bowling Basin sediments (pH 8.0; 0.2psu).						
				Scale of change associated with salinity and temp (Bangkedphol et al, 2009) for the						
				range that may be naturally expected is not deemed large enough to need accounting for within this assessment, plus natural temporal variations would complicate the						
		3.164		assessment. The same could be said for pH but included pH adjustment factor given available data.	0.05		4.5	Koc - Meador (2000); Meador (2000a) 32,000 (2000).	. pKa-Meador	6.25 0.98252
TBT TBT PAHs	2 precautionary Kd 3 worst case Kd	2.459 1.694	287.67 49.42	MIE (2011) i.e. as per Netherlands sediment assessment methods. Koc used in derivation of the MAC (EC 2005)	0.05 0.05		3.8 3.0	6,310 MIE (2011). 1,084 EC (2005)		6.25 0.98252 6.25 0.98252
PARIS				Approximates Netherlands i.e. MIE (2011) - logKoc of 5.82						
İ				More precautionary than the LogKoc of 6.01 presented by EA (2003) - based on older data.						
Benzo(a)pyrene	1 recommended Kd	4.4	27 258	Median Log Koc value of 6.7 from Hawthorne et al (2009) and partition coefficients quoted by PubChem (2018) i.e. >4.9, also suggest that this is a precautionary value.	0.046404	6.13	5.7689	587400 MDEQ (2015).	n/a	
Benzo[a]pyrene Benzo[a]pyrene	2 precautionary Kd 3 worst case Kd	4.3	20,795	EC (2011) EQS dossier. Kd is EC (2011) Ksed-water value, i.e. not linked to Koc. Eadie (1991) mean 9120 +/-5950 SD	0.046404	,	5.92	831764 EC (2011). Eadie (1991)	n/a n/a	
Benzo[b]fluoranthene	1 recommended Kd	4.4		Approximates Netherlands i.e. MIE (2011) - log Koc of 5.76 Approximates LogKoc of 5.74 presented by EA (2003) - based on older data.	0.046404	5.78	5.8	599400 MDEQ (2015b) - Koc.	n/a	
Benzo[b]fluoranthene Benzo[ghi]pervlene	2 precautionary Kd 1 recommended Kd	4.3 5.0	20,795	Approximates Edge Co. 13.74 presented by Ed (2003) - based on older data. EC (2011) EGC dossier. Kd is EC (2011) Ksed-water value, i.e. not linked to Koc. Approximates Netherlands i.e. MIE (2011) - logKoc of 6.47	0.046404	6.63	5.9	831764 EC (2011). 1951000 MDEQ (2015).	n/a	
Benzo[ghi]perylene	2 precautionary Kd	4.4		FC (2011) FQS dossier. Kd is EC (2011) Ksed-water value, i.e. not linked to Koc. Less confidence compared to recommended value above. Value originally taken from	0.046404	0.03	6.0	1023293 EC (2011)	n/a n/a	
Benzo[ghi]perylene	3 worst case Kd	4.3	18,904	SRC database.	0.046404		5.6	407380 EA (2003)	n/a	
Benzo[k]fluoranthene				Approximates Netherlands i.e. MIE (2011) - log Koc of 5.75. More precautionary than the LogKoc of 6.09 presented by EA (2003) - based on older data.						
	1 recommended Kd	4.4		data. More precautionary than Log Koc range presented by PubChem (2018). EC (2011) EQS dossier. Kd is EC (2011) Ksed-water value, i.e. not linked to Koc.	0.046404 0.046404	6.11	5.8 5.9	587400 MDEQ (2015c). 794328 EC (2011).	n/a	
Benzo[k]fluoranthene	2 precautionary Kd	4.3	19,859	EC (2011) EQS dossier. Kd is EC (2011) Ksed-water value, i.e. not linked to Koc. Approximates Netherlands i.e. MIE (2011) - logKoc of 4.61. More precautionary than Eadie (1991) - mean Kd of 11396.	U.U4b4U4		5.9	/34328 EC (2011).	n/a	
Fluoranthene				More precautionary than LogKoc of 5.03 presented by EA (2003).						
				More precautionary than LogKoc of 5.03 presented by EPA (2003). Approximates but is more precautionary than Delle Site (2001) - mean log Koc						
Fluoranthene	1 recommended Kd 2 precautionary Kd	3.4 3.1		(sediments) 4.91 Based on worst case of Koc range - Brannon et. al. (1993).	0.046404 0.046404	5.16	4.7 4.5	55450 MDEQ (2015a). 29500 Brannon et. al. (1993)	n/a n/a	
PBDEs BDE-28				Wang et al (2011) San Diego Creek data (Log Koc +-0.04 SD) - DOC of 6.49mg/l,						
BDE-20	1 recommended Kd	4.8	62,596.89	sand/silt/clay.	0.046404		6.13	1,348,963 Wang et al (2011)	n/a	
				Wang et al (2011) Greasy Creek sediment (Log Koc+-0.05 SD) - DOC of 3.39mg/l, sand						
BDE-28				dominated. More precautionary than Netherlands i.e. MIE (2011) - Log Koc of 5.5 (generic PBDE).						
				Wei-Haas (2015) values (Koc values about an order of magnitude lower) not adopted as focussed entirely on aquatic DOM, rather than soil derived. Given current project						
	2 precautionary Kd	3.6	4,136	focus of sediment disturbance, these values are deemed too low. Wang et al (2011) San Diego Creek data (Log Koc +-0.03 SD) - DOC of 6.49mg/l,	0.046404		4.95	89,125 Wang et al (2011)	n/a	
BDE-47	1 recommended Kd	4.52	32,851	sand/silt/clay.	0.046404		5.85	707,946 Wang et al (2011)	n/a	
				Wang et al (2011) Greasy Creek sediment (Log Koc+-0.01 SD) - DOC of 3.39mg/l, sand						
				dominated. Approximates the Netherlands generic PBDE value i.e. MIE (2011) - Log Koc of 5.5.						
BDE-47				For information, average of the literature values gathered by Wei-Haas (2015) produced Log Koc of 5.196.						
				Wei-Haas (2015) values themselves(Koc values about an order of magnitude lower) not adopted as focussed entirely on aquatic DDM, rather than soil derived. Given						
	2 precautionary Kd	4.44	27,325	current project focus of sediment disturbance, these values are deemed too low. EC (2011) EQS dossier. Kd estimated from EC (2011) Koc for consistency with other	0.046404		5.77	588,844 Wang et al (2011)	n/a	
BDE-47	3 worst case Kd	4.25	17,793	BDEs. Wang et al (2011) San Diego Creek data (Log Koc +-0.02 SD) - DOC of 6.49mg/l,	0.046404		5.58	383,440 EC (2011)	n/a	
BDE-99	1 recommended Kd	4.92	82,519	sand/silt/clay.	0.046404		6.25	1,778,279 Wang et al (2011)	n/a	
				Wang et al (2011) Greasy Creek sediment (Log Koc+-0.01 SD) - DOC of 3.39mg/l, sand						
BDE-99				dominated. Less precautionary than Netherlands i.e. MIE (2011) - Log Koc of 5.5 (generic PBDE),						
	2 precautionary Kd	4.86	71,871	however this is generic and confidence in Wang et al (2011) data is good. Wei-Haas (2015) aqautic DOM data not used, as above.	0.046404		6.19	1,548,817 Wang et al (2011)	n/a	
BDE-99										
	3 worst case Kd	4.66	45,631	EC (2011) EQS dossier. Kd taken estimated from Koc (measured) for consistency with other BDEs. Quoted Ksed-water lower range appears very low in any event.	0.046404		5.9927	983,340 EC (2011)	n/a	
BDE-100	1 recommended Kd	5.0	99,209	Wang et al (2011) San Diego Creek data (Log Koc +-0.00 SD) - DOC of 6.49mg/l, sand/silt/clay.	0.046404			2,137,962 Wang et al (2011)	n/a	
BDE-100			,	EC (2011) EQS dossier. Kd taken estimated from Koc (measured) for consistency with other BDEs. Quoted Ksed-water lower range appears very low in any event. Same				and the second	-7-5	
	2 precautionary Kd	4.66	45,631	PentaBDE group as PBE-99 above.	0.046404		5.9927	983,340 EC (2011)	n/a	
BDE-100				Wang et al (2011) Greasy Creek sediment (Log Koc+-0.12 SD) - DOC of 3.39mg/l, sand dominated.						
	3 worst case Kd	4.4	27,325	Approximates the Netherlands i.e. MIE (2011) - Log Koc of 5.5 generic PBDE value. Wang et al (2011) San Diego Creek data (Log Koc +-0.01 SD) - DOC of 6.49mg/l,	0.046404		5.77	588,844 Wang et al (2011)	n/a	
BDE-153	1 recommended Kd	5.1	124,897	sand/silt/clay.	0.046404		6.43	2,691,535 Wang et al (2011)	n/a	
BDE-153				Wang et al (2011) Greasy Creek sediment (Log Koc+-0.02 SD) - DOC of 3.39mg/l, sand dominated.						
				Less precautionary than Netherlands i.e. MIE (2011) - Log Koc of 5.5, however this is generic and confidence in Wang et al (2011) data is good.						
	2 precautionary Kd	4.9	71,871	Wei-Haas (2015) aqautic DOM data not used, as above. Approximates the same as calculated value using EC (2011) Koc of 1740000.	0.046404		6.19	1,548,817 Wang et al (2011)	n/a	
BDE-154	1 recommended Kd	5.1	133,830	Wang et al (2011) San Diego Creek data (Log Koc +-0.00 SD) - DOC of 6.49mg/l, sand/silt/clay.	0.046404	_		2,884,032 Wang et al (2011)	n/a	
BDE-154	2 precautionary Kd	5.1	124,826	Using measured Koc of 2690000 from EC(2011). Wang et al (2011) Greasy Creek sediment (Log Koc+-0.12 SD) - DOC of 3.39mg/l, sand	0.046404		6.43	2690000 EC (2011)	n/a	
BDE-154				dominated. Less precautionary than Netherlands i.e. MIE (2011) - Log Koc of 5.5, however this is						
Others	3 worst case Kd	4.8		generic and confidence in Wang et al (2011) data is good.	0.046404		6.10	1258925 Wang et al (2011)	n/a	
Hexachlorobenzene (HCB) Hexachlorobenzene (HCB)	1 recommended Kd 2 precautionary Kd	4.1 3.8	5,978	Average Log Koc sediment value (5.11-5.85) Minimum value of Log Koc range	0.046404 0.046404		5.48 5.11	301995 Delle Site (2001) 128825 Delle Site (2001)	n/a n/a	
Hexachlorobutadiene (HCBD)	0 High literature Kd	3.6		Log Koc provided in Canadian guidelines More conservative than sediment Kd (1954.05) presented by EuroChlor(2002) and	0.046404		4.90	79433 CCME (1999)	n/a	
Hexachlorobutadiene (HCBD) Hexabromocyclododecane (HBCDD)	1 recommended Kd 0 High literature Kd	2.7 3.6	521 4,223	approx equal to calculated Kd value from EuroChlor(2002) Koc of 9371. Koc provided in EPA (2014)	0.046404 0.046404	4.78	4.05 4.96	11220 MIE (2011) - log Koc of 4.05 91000 EPA (2014)	n/a n/a	
Hexabromocyclododecane (HBCDD)	1 recommended Kd	3.3	2,121	Based on Koc value used for derivation of EU quality standards - dynamic i.e. linked to	0.046404		4.66	45709 EC(2011)	n/a	
Hexabromocyclododecane (HBCDD)	2 precautionary Kd			Based on Ksed-water (fixed value) quoted by CIS (2011) / EC(2011)						